CHROM, 9866

Note

Thin-layer chromatography of some cyanine dyes

H. A. KUES

The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, Md. 20810 (U.S.A.)

and C. E. TEAGUE 114 South Dixie Trail, Raleigh, N.C. 27607 (U.S.A.) (Received December 8th, 1976)

In the process of evaluating indicator dyes for the study of retinal circulation, it was found necessary to check dye purity. Thin-layer chromatography (TLC) proved to be the most rapid and effective means available to fill our needs¹⁻³. In our search of the literature little TLC data was found on one particular class of dyes known as cyanines⁴. This group of dyes were of high interest to us because of their wide distribution of fluorescent wavelengths over the visible spectrum. It is also well to note that this group of dyes shares a high degree of interest in dye laser work^{5,6}.

Various TLC systems as suggested by Stahl⁷ were tested on the different subgroups of cyanine dyes, some were much better than others. This report gives the results obtained for each system tried, along with R_F values for the dyes and the impurities in these dyes.

MATERIALS AND METHODS

All the TLC sheets used were purchased precoated (Chromatogram sheets, 100- μ m coating of silica gel, from Eastman-Kodak (Rochester, N.Y., U.S.A.) aluminum-backed 250- μ m silica gel sheets from EM Labs. (Elmsford, N.Y., U.S.A.)). Solvents were mixed from high purity components obtained from Fisher Scientific (Pittsburgh, Pa., U.S.A.). The dyes with NK prefixes were obtained from Nippon Kankoh-Shikiso Kenkyusho (Okayama-Shi, Japan). Indocyanine green (ICG) in high purity was donated by Hynson, Westcott and Dunning, (Baltimore, Md., U.S.A.). See Table I for a list of dyes and dye structures.

The procedure followed in running the chromatograms consisted of preparing a 0.1% (w/w) solution of each dye in methanol. These dye solutions were made up as close as possible to the spotting time, since decomposition often occurs with time in many of the cyanine family. The solvents to be used were poured in the chromatography chamber and onto a saturation pad in the chamber at least 20 min prior to a run to allow the air and solvent in the chamber to equilibrate. The TLC sheets were placed in an oven at 125° for 30 min before each run. When the sheets and chamber were ready, each solution of dye was spotted 2.5 cm from the bottom of the sheet

CYANINE DYE STRUCTU	rures						
Me = CH ₃ ; Et = C_2H_3 ; p-AS groups that are bound to the tdyes have been listed as possimanufacturer.	$Me = CH_3$; $Et = C_2H_3$; $p-ASA = p$ -aniline sulfonic acid; $p-TSA = p$ -toluene sulfonic acid; $ICG =$ indocyanine green. In the column listing the R and R' groups that are bound to the nitrogen atoms, there are several cases where the dye is listed as a salt in the NK catalog but the cation is not given. These dyes have been listed as possible sodium salts, <i>e.g.</i> , NK 1839 has R' = (CH ₂) ₃ SO ₃ (Na ?). NK dye numbers listed are actual catalog numbers from the manufacturet.	p-toluene sulft s where the dye R' = (CH ₂) ₃ SC	nic acid; JCG is listed as a st is listed as a st b ₃ (Na?), NK dy	= indocyanin It in the NK e numbers lis	e green. In the colun catalog but the cati ited are actual catal	nn listing th on is not gi log number	e R and R' ven. These s from the
Name ' ' '	Molecular structure	Dye No.	n R	X	R'	Y	Z
2,2'-Indocarbocyanine	Me Me Me Me	NK 1639	1 (CH ₁) ₃ SO ₃ -	03	(CH ₂) ₃ SO ₃ -	I	1
		NK 1405	3 CH2C00-	-0	CH1COOH	1	I
2,2'-Indo-4,5,4',5'-di- benzocarbocyanine		ICG	3 (CH ₁),SO ₃ -	-"0	(CH2)4SO3Na	I	I
	- XS						
2,2'-Thiacarbocyanine	$Y = \begin{pmatrix} S \\ + \end{pmatrix} - (CH^{2}CH)_{n} - CH = \begin{pmatrix} S \\ + \end{pmatrix} - Y$	NK 1839 NK 156	2 (CH ₁) ₃ SO ₃ - 2 Et	03 ⁻ - EtSO4 ⁻	(CH ₂) ₃ SO ₃ (Na?) Et	4,4′-Me	B-TCN-Et
2,2'-Thiacarbocyanine	CLARCHIN-CHRCHICK	NK 1638 NK 1407	1 Et 3 C ₂ H ₄ COOH	EtSO4- JOH Br-	Et C ₂ H,COOH	I 1	1 1
2,2'-Thia-4,5,4',5'- dibenzocarbocyanine	<pre>CH=CH=CHIn-CH=<s k</s </pre>	NK 2075 NK 1978	1 (CH ₁) ₃ SO ₃ - 3 (CH ₁) ₃ SO ₃ -	0°" 1	Et (CH ₂) ₃ SO ₃ (Na?)	11	11
2,2'-Oxocarbocyanine	γ-€ ²)ιοι+ ²	NK 1952	1 (CH ₁) ₃ SO ₃ -	03- S	(CH ₁) ₃ SO ₃ Na	5,5'-Di- nhenvl	9-Et
) ≥œ ×≿	NK 2073	1 (CH ₁) ₃ SO ₃ -	03- 1	(CH ₂) ₃ O ₃ H	5-phenyl- 4,5'-benzo	I

NOTES

222

TABLE I

	11-CI			-		
1	ΙΞ	113		11	1	1
5,5'- Diphenyl	1	111	-,4,5,4,5'- Dibenzo	6-Me	l	l
(CH ₂) ₂ O ₄ -	ដី ដី	4 [−] Et · C ₂ H₄COO(Na ?) A Et	武武	С ₂ Н4СООН С2Н4СООН	1	I
i	EtSO4- p-TSA	EtSO4- Et - C2F p-TSA Et	11	1 1	I	ſ
1 Et	1 Et 2 Et	1 Et 1 C ₁ H,COO- 1 Et	1 (CH ₃) ₅ SO ₃ - 1 (CH ₃) ₅ SO ₃ -	2 C ₃ H ₄ COOH 2 C ₃ H ₄ COOH	i 1	1
NK 1518	NK 179 NK 1143	NK 171 NK 1753 NK 1255	NK 2237 NK 2239	NK 1901 NK 2050	NK 2062	NK 2240
y-total and the characterian of the second s		RX XR−Xt+ →−(cH=cH) _n −cH= A → R'	Y→CT S CH=CH),-CH=CH,-CH=CH=CH=CH=CH=CH=CH=CH=CH=CH=CH=CH=CH=C	$Y = \left(CH^{+}CH^$	$\left\langle \int_{CH} \left\langle h \right\rangle_{A} = CH - CH = \left\langle f \right\rangle_{C_{2}}^{S} + \frac{1}{2} C_{2} + \frac{1}{4} COH$	CH-CH=CH-CH=CH-CH=CH-CH= (CH ₂) ₃ SO ₃ NO
2,2'-Oxa, thiacarbocyanine	2,2'-Quinocarbocyanine	4,4'-Quinocarbocyanine	Dimethylcyclohexene substituted in bridge	Merocyanine: 2-thia derivatives	Miscellaneous mero- cyanines	

NOTES

ł

and allowed to air dry. The sheets were then placed in the chamber to develop. After development the sheets were removed and left in the hood until the solvent evaporated. The sheets were then observed under white light as well as short and long ultraviolet (UV) light and R_F values were recorded.

RESULTS AND DISCUSSION

Results are summarized in Tables II and III. The two solvents that seem to give the best results and most suited to the cyanine group in general are 100% methanol and the propanol-formic acid (80:20) mixture. These solvent systems were tried on many other cyanine dyes that are not reported here with approximately an 85% success rate.

TABLE II

R_F VALUES FOR CYANINE DYES

TLC on silica gel (EM Labs.). I = Methanol (100%); II = n-Butanol-acetic acid-water (20:10:50); III = n-Butanoi-ethanol-water (90:10:10); IV = chloroform-methanol (80:20). Values in parentheses are spots observed under UV light (thought to be impurities). U indicates that the TLC system was unsatisfactory for the compounds. A dash (-) indicates that the compound was not tested with that TLC system.

Dye NK No.	$R_{\rm F} imes 100$						
	I	II	III	IV			
ICG	86		<u>_</u>				
156	(7)	22		85			
. 171	5	24 (31)	_	86			
179	5 (42)	51 (16)	_	92 (76)			
1143	_	21, 46, 55, 59 (66)		89, 96			
1255	_	19	_	85			
1405	21, 54, 62, 82 (59, 68)						
1407	51, 60 (33)	_	_	-			
1518	_	38, 50, 62 (68)	_	25, 40, 57, 88, 98			
1638	6	52 (17, 31)	_	87			
1753	47 (54)	U	_	_			
1901	70, 77	73	18, 34, 43	92			
1978	66, 73, 79	30 (37)	_	U			
2050	66, 74	71	22, 33, 41	92			
2062	79	57	23, 44	83			
2070	60	U	ບ໌	80 (90)			

The two silica gel coatings tended in some cases to give different results when used with the same solvents, however, reproducibility of chromatograms on the same manufacturers' coatings was good. Several of the cyanine dyes are noted for rapid decomposition in some solvents and it was thought this might be a problem⁴. However, most dyes tested held up rather well with the solvents tried.

TLC did answer our questions concerning the purity of cyanine dyes as received from the manufacturers, in the sense that most were impure, and will supply us with some form of reference for dyes received in the future and any modification that may be done to individual dyes.

TABLE III

R_F VALUES FOR CYANINE DYES

TLC on silica gel (Eastman). V = Methanol (100%); VI = n-Butanol-acetic acid-water (20:10:50); VII = n-Butanol-ethanol-water (90:10:10); VIII = chloroform-methanol (80:20). Values in parentheses are spots observed under UV light (thought to be impurities). U indicates that the TLC system was unsatisfactory for the compound. A dash (-) indicates that the compound was not tested with that TLC system.

Dye NK No.	$R_F imes 100$						
	V	VI	VII	VIII			
ICG	76	42	14	83			
156	U	-	19	-			
171	9 (34)		16	_			
179	10 (45, 57)		17	-			
1143	10, 35		_	91, 98			
1255	U		15	-			
1405	13, 44, 52, 59 64, 71 (22, 39)	50, 55, 63, 72	14, 27, 43, 50, 57, 63, 84 (21, 53)	77, 89, 96 (35, 63)			
1407	46, 55	28, 36, 41	U	17, 79 (50)			
1518	11, 67	'	13 (37)	-			
1638	12		18				
1639	74						
1753	41		U	-			
1839	76		-				
1901	67			_			
1952	73	~					
1978	71		U	_			
2050	78	-	_	-			
2062	63	-		-			
2070	28		-	-			
2073	66	_					
2237	58	-	35	95, 98			
2239	26, 31		24	98 (92)			
2240	56, 62, 64, 65 (71)	_	U	84, 94			

ACKNOWLEDGEMENTS

This work was supported by the National Institutes of Health Contract No. N01-EY-3-2139. The authors wish to acknowledge B. F. Hochheimer and Dr. R. C. Benson for their assistance in this work.

REFERENCES

- 1 J. S. Bellin and M. E. Ronayne, J. Chromatogr., 24 (1966) 131.
- 2 H. L. Dobres and W. A. Moats, Stain Technol., 43 (1968) 27.
- 3 R. W. Horobin, Histochem. J., 1 (1969) 231.
- 4 F. Hamer, Cyanine Dyes and Related Compounds, Interscience, New York, 1964, p. 732.
- 5 Y. Myazoe and M. Maeda, Appl. Phys. Lett., 12 (1968) 206.
- 6 J. P. Webb, F. G. Webster and B. E. Piovrde, Eastman Org. Chem. Bull., 48, No. 3 (1974) 1.
- 7 E. Stahl (Editor), Thin Layer Chromatography, Springer, New York, 1969, p. 618.